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SUMMARY 

Extensive study on the numerical simulation of the vortical flow over a double-delta wing is carried out using 
the ‘thin layer’ Navier-Stokes and Euler equations. Two important flow characteristics, vortex interaction 
and vortex breakdown, are successfully simulated. Grid resolution is one of the most important factors 
associated with the vortex problem. Computations were performed on a series of grids with various levels of 
refinement, coarse, medium and fine. Computations using either the coarse or medium grids fail to capture 
the proper physical phenomena. The computed result using a fine grid shows flow unsteadiness once the 
vortex breakdown takes place. The C,-a characteristics are well predicted up to the breakdown angle of 
attack for all the grid distributions. The Euler solutions show fairly good agreement with experiment on the 
C,-a characteristics. However, other aspects of the solution at each angle of attack, such as the locus of the 
leading-edge separation vortex, are not consistent with experiment. Even for the fine grid Navier-Stokes 
computations, further grid resolution is required to obtain good quantitative agreement with experiment. 
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INTRODUCTION 

The vortical flow associated with leading-edge separation is believed to be essentially convection- 
dominated flow (in other words, rotational inviscid flow), and thus methods which describe flow 
separation and inviscid rotational flow are feasible for this purpose. Recently, many simulations of 
such flow fields using three-dimensional Euler and/or Navier-Stokes equations have been 
reported.’ The computed results indicate that these methods are capable of predicting a variety of 
vortical flow fields. 
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The Euler equations, which cannot describe flow separation mathematically, give us reasonable 
results because the flow separates at the leading edge owing to the numerical dissipation. It is 
claimed that these solutions are essentially independent of the choice of dissipation, at least for 
sharp leading-edge geometries.2 One defect of the Euler equation approach is that it cannot 
capture a secondary vortex near the leading edge. On the other hand the Navier-Stokes equations 
have the capability to describe all the separation vortices. Most computations have used the ‘thin 
layer’ Navier-Stokes equations; This is justified by the fact that the viscous effects are confined to a 
thin layer near the wall boundary and are dominated by the viscous terms associated with the 
strain rates normal to the wall, and the flow away from the body is essentially rotational inviscid. 
Viscous terms may not be neglgible in the shear layer rolling up from the leading edge and in the 
core of the vortical flow. However, the contribution of these terms to the basic structure of the flow 
field is believed to be small. Besides, the viscous terms are not properly evaluated in these regions, 
even by the full Navier-Stokes equations, since the computational grid is usually not fine enough. 
Recent computations by Fuj i  and Schiff and Thomas et aL4 showed that vortex breakdown is 
simulated by the ‘thin layer’ Navier-Stokes equations. 

Although many computational results have been reported, questions remain to be answered 
about the reliability of the solutions. They are: (1) Is the solution quantitatively good? (2) Is the 
result independent of the number of grid points to be used? (3) Is the result independent of the 
choice of numerical dissipation? (4) Does the Euler computation predict the vortex breakdown? 

In the present paper three-dimensional Euler and Navier-Stokes computations for the nearly 
incompressible vortical flow fields over a double-delta wing are presented to help to answer these 
questions. The flow field over a double-delta wing is more complicated than that of a delta wing. 
There are separation vortices from both a strake leading edge and a wing leading edge. Over the 
wing region these vortices interact with each other. The inboard vortex originally induced by the 
strake leading edge is relatively weak in the wing region, and thus it moves outboard by the 
induced velocity of the wing vortex and merging of the two vortices occurs. When the angle of 
attack is increased, vortex breakdown occurs near the wing trailing edge. To obtain numerical 
solutions for leading-edge vortical flow fields, both a powerful computer and an efficient 
computational method are needed. Two supercomputers, the CRAY 2 at NASA Ames Research 
Center and the Amdahl 1200 at Amdahl Corporation, are used. The code based on the LU-AD1 
algorithm developed by one of the authors is appropriate for this purpose, since extensive 
applications of this code for many other flow fields have indicated reliability and efficiency. 

GOVERNING EQUATIONS AND NUMERICAL ALGORITHM 

The partial differential equations in the generalized co-ordinate system governing the three- 
dimensional flow of an unsteady ideal gas can be written in conservation law form as 

(1) 

The definition of each vector of equation ( 1 )  can be found in Reference 3. In equation (1) the thin 
layer approximation has been introduced. Euler equations are obtained by neglecting the viscous 
terms in equation (1). The pressure, density and velocity components are related to the energy by 
the following equation: 

d,Q + d,E + d,E + d& = Re-  a$. 

p = (y - 1)[e - p(u2 + u2 + w2)/2]. 

In the following computations, flow is assumed to be laminar and no turbulence model is used. 
The metrics are evaluated using second-order central difference formulae for interior points and 
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three-point one-sided formulae at the boundaries. Solution of equation (1) is obtained by time 
integration. 

The numerical algorithm used here is the LU-AD1 factorization method proposed by Fuj i  and 
O b a y a ~ h i . ~  Each AD1 operator is decomposed into the product of lower and upper bidiagonal 
matrices by using a flux-vector-splitting technique and a diagonally dominant factorization. 
Central differencing is used on the right-hand side. In the solution process an inversion in one 
direction consists of one forward sweep and one backward sweep of the scalar matrix. Thus the 
LU-AD1 aigorithm requires little additional memory and is easily vectorized. The basic algorithm 
is first-order in time and second-order in space. For the convective terms on the right-hand side, 
fourth-order differencing is used except near the boundaries. Maintenance of the free stream is 
achieved by subtracting the free-stream fluxes from the governing equations. The artifical 
dissipation model developed in Reference 5 is used in this study. 

RESULTS 

Most of the computations were carried out on the Amdahl 1200 supercomputer with a maximum 
speed of 570 MFLOPS. Two of the fine grid Navier-Stokes solutions showing vortex breakdown 
were obtained on the CRAY 2 supercomputer with a maximum speed of 1700 MFLOPS for four 
processors. One computation was carried out on both machines and the computed C ,  distri- 
butions were within plotting accuracy. The code required 8.6 ps per grid point per iteration on the 
Amdahl 1200 and 20.0 ps on a single processor of the CRAY 2. 

Grid topology and boundary conditions 

The body geometry in the present study is a double-delta wing. The leading-edge swept angle is 
80" at the strake and 60" at the wing. The thickness is 0.6% of the root chord and the leading edge 
is rounded. The geometry is the same as that of the experiment in Reference 6,  and is very similar to 
that of the experiment in Reference 7 except for a slight difference of the wing thickness. A 
perspective view of the discretized region is shown in Figure 1. The grid topology is H-type in the 
chordwise direction and 0-type in the spanwise direction. The computational grid is generated by 

Figure 1. Close-up view of the discretized region 
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the two-dimensional, hyperbolic, grid generation method for each chordwise station. To 
accurately describe the body geometry, the surface grid is carefully distributed, especially in the 
apex, leading-edge and trailing-edge regions. 

The grid extends approximately two root chords upstream, three chords downstream and two 
and a half chords above, below and outboard of the wing. The location of the outer boundaries is 
not far from the body but is probably satisfactory. The influence of the outer boundary on the 
solutions needs further investigation. Free-stream values are specified along the upstream and 
circumferential boundaries and the pressure is fixed, and extrapolations of the other physical 
variables are used at the outflow boundary. Bilateral symmetry is imposed to reduce the 
computational domain. 

The grid consists of 119 points in the chordwise ( 5 )  direction, with 14 points upstream of the 
body, 76 points over the body and 25 points in the wake; 101 points in the circumferential (q) 
direction; and 71 points in the radial (c )  direction. To see the effect of grid resolution, two other 
computational grids are used which consist of 61 x 63 x 41 points in the 5, q and ( directions 
respectively (medium grid), and 41 x 33 x 27 points (coarse grid). It should be noted that in both 
the medium and coarse grids the computational surface grids lack representation of the geometry 
near the apex, the trailing edge and certain areas of the leading edge because the total number of 
grid points is limited. 

The computations reported in this paper utilize a Mach number of 0.3 so that comparison with 
a low-speed experiment can be made. The Reynolds number is 1.3 x lo6, based on the chord length 
at the root corresponding to the experiment.6 

Fine grid Navier-Stokes solutions 

The perspective view of the total pressure contour plots in several chordwise stations is shown 
in Figure 2 at CI = 12". Total pressure contour plots are frequently used in both experiments and 
computations because they are a good indication of vortex patterns. At this angle of attack, two 
vortices, one from the strake and the other from the wing leading edge, are observed. The strength 
of the wing vortex increases with increasing distance downstream of the strake-wing junction. As 
the strength of the wing vortex increases, the weaker strake vortex is drawn outward and 
downward owing to the velocity field induced by the wing vortex. At the downstream station the 
strake vortex is observed to merge with the wing vortex. The total pressure loss due to the 
secondary separation vortex is also seen in the two downstream stations shown in Figure 2. The 

Figure 2. Perspective view of the spanwise total pressure contour plots; M ,  =0.3, Re= 1.3 x lo6, a =  12" 
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merging process is well simulated by the computation. However, the surface pressure plots (not 
shown here) indicate that the computed inner strake vortex is weaker compared with the 
experiment.6 Downstream of the strake-wing junction the strake vortex is no longer fed by 
vorticity shed from the leading edge, and so remains constant in strength or may weaken because 
of viscous effects. The current grid resolution and the spatial accuracy of the computational 
scheme are not enough to capture this process accurately. In other words, the vortex tends to lose 
its strength rapidly because of the numerical dissipation. 

The perspective view of the total pressure contour plots at several chordwise stations is shown 
in Figure 3 at  a= 30". At this angle of attack, the merging of the strake and wing vortices occurs 
near the strake-wing junction. An abrupt change of the flow is observed at about 85% of the chord 
along the streamwise direction, where the size of the vortex core suddenly becomes large. Off- 
surface particle path traces shown in Figure 4 demonstrate the breakdown of the primary vortex 
clearly. The flow pattern obtained in the experiment' for the same planform geometry is also 
presented. It should be noted that the experimental Reynolds number is lower and weak 
asymmetry of the flow is observed in the experiment. The vortex from the strake region is well 
ordered and is very tightly coiled until about 80 or 85% of the chord, where an abrupt change of 
the flow is observed. In addition to the particles released from the strake and the wing leading 
edges, some particles are released from the trailing-edge region. Some of these particles move 
upstream to about 85% of the chord and then move back downstream to the trailing-edge region. 
The existence of streamwise reverse flow is evidence of the vortex breakdown. It should be noted 
that these reverse-flow particles continue to swirl along with the general motion of the vortex, 
although the swirling is weak. It is also noticed that the strake vortex moves outward just behind 
the strake-wing junction because of the interaction with the wing vortex. 

The top view of the off-surface particle path traces at cr=35" is shown in Figure 5. The 
breakdown now takes place at about 60% chord location. The core flow from the strake leading 
edge has an abrupt kink there and forms a large spiral. A vertical spiral inside the breakdown 
region is observed at  this location. This figure indicates that the core flow does not keep its original 
strong vorticity after the kink point. This may come from the resolution problem mentioned 
above. However, it is obvious that the a=35" case shows a different type of breakdown from the 
breakdown at CI = 30". 

Careful examination of the flow field3 revealed that the breakdown at a = 30" can be classified to 
be a bubble-type breakdown. Even though there is no clear evidence, the result at a = 35" seems to 
indicate the existence of a spiral-type breakdown. The structure of the vortex breakdown is not 
fully understood. In the experiment' on the delta wing, for instance, it is reported that both a spiral 
and a bubble type of breakdown were observed to transform one to the other at random. The effect 

Figure 3. Perspective view of the spanwise total pressure contour plots; M,=0.3,  Re=  1.3 x lo6, cc=30° 
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COMPUTATION 

Figure 4. Computed off-surface particle path pattern compared with the experiment;' M ,  =0.3, a=30", Re= 1.3 x !06 
(incompressible and Re= 1.0 x lo5 for the experiment) 

Figure 5. Computed off-surface particle path pattern; M,=0.3, Re= 1.3 x lo6, 01=35" 
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of turbulence is one factor always in issue. The computation assumes laminar flow, and the grid 
resolution is not enough to capture small eddies associated with the turbulent flow. However, 
global vortical flow structure in the absence of the breakdown must remain the same for both 
laminar and turbulent flows. Thus the computed solutions may be useful to understand the flow 
structure, although the strict quantitative comparison with the experiment is very difficult. 

Figure 6 shows the C,-a curve comparison for the present Navier-Stokes and Euler 
calculations and experimental data of Reference 6. The Navier-Stokes result shows good 
agreement up to about 27" where vortex breakdown takes place. Careful examination of the C,-cc 
curve indicates non-linear behaviour of the flow field. The critical change of lift occurs at about 27" 
angle of attack with vortex breakdown. The exact angle of attack at which vortex breakdown 
occurs is sensitive to the initial condition, probably because of a hysteresis effect. The C,-value in 
this figure is obtained with the free-stream initial condition. When started from the solution at 
cc=30", the computed value at a=28" becomes 0.912+0.005, which is less than the value in this 
figure. The C,-Value at a=27" becomes almost constant at  the value 1.21 when started from the 
solution at a = 25", and becomes 0.966 f 0.004 when started from the solution at a= 28". 
The residual does not drop enough to obtain steady-state solutions for these cases, as 
described below, although the C,-values stay in a certain range even after 400&8000 additional 
iterations. The outflow condition and the location of the outer boundary may explain this 
problem. More careful specification of the boundary conditions is necessary to discuss the 
quantitative features of the solutions. It should be remembered that a similar hysteresis of the 
C,-a curve is also observed in some experiments. The Euler solutions shown in Figure 6 are 
discussed later. 

The convergence history for the a =  15" case is shown in Figure 7 in terms of the C, and the 
maximum residual. Since preliminary computation showed the flow unsteadiness at high angles of 
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Figure 7. C ,  and maximum residual history for GI= 15"; M ,  =0.3, Re= 1.3 x lo6 

attack, the time step was set to be constant (At=0.01). The computation was continued up to 5000 
iterations for each case. At this angle of attack, the maximum residual drops more than three 
orders of magnitude within 2000 iterations and the C, becomes almost constant. The C ,  is not 
strictly constant because there is small unsteadiness in the flow field. However, the global flow field 
is settled and does not change. A similar tendency is obtained for every angle of attack up to the 
breakdown point. The computed C, shows clear unsteadiness above this angle of attack. 
However, the C, stays in a certain range, as is shown in Figure 6. It should be noted that all the 
results for an angle of attack above 30" are instantaneous (rather than steady-state) results that 
correspond to about 5000 iterations. At a = 30" the unsteadiness is small and the global feature of 
the flow does not change. At a = 35" flow inside the breakdown changes its features in time. There 
may be a concern about using a diagonal-form LU-AD1 solution method for unsteady 
computations since the algorithm is at best first-order accurate and non-conservative in time. 
However, in the present study, quantitative study of the time-dependent response is not the 
primary interest. The main interest is associated with qualitative comparison of flow quantity 
amplitudes. In addition, the flow oscillations observed are slow and shock-free. The use of the 
diagonal form should be adequate. 

Fine-grid Euler solutions 

To evaluate the reliability of the Euler solution, several Euler computations were carried out 
under the same conditions. The code was the same as the Navier-Stokes computation, except that 
the viscous terms were deleted and the non-slip condition was not imposed. In addition, the same 
grid was used. The smoothing terms were also set to be similar. 

Figure 6 indicates that Euler results showed fairly good agreement with the experiment and may 
be in even better agreement than the Navier-Stokes solution throughout the breakdown region. 
The perspective view of the total pressure contour plots is shown in Figure 8 at cc = 12". The same 
contour level was used as in Figure 2. The Euler solution shows only a very weak vortical flow 
(thus C, is lower than in the Navier-Stokes solution), and the two vortices do not merge even at 
the trailing edge. The result at a = 30" is shown in Figure 9. Again, the contour level of Figure 3 
was used. The Euler solution now shows a clear vortical flow but fails to predict vortex 
breakdown. However, at LI = 35" vortex breakdown takes place. Since solutions are sensitive to the 
initial condition when vortex breakdown takes place, it is difficult to draw conclusions. However, 
in the present case, up to the angle of attack where vortex breakdown takes place, the computed 
results using the Euler equations are not consistent with the experiment. 



LEADING-EDGE SEPARATION VORTICES 1327 

Figure 8. Perspective view of the spanwise total pressure contour plots (Euler solution); M, =0.3, a= 12" 

Figure 9. Perspective view of the spanwise total pressure contour plots (Euler solution); M,=0 .3 ,  a=30" 

The grid and smoothing efeect 

The C,-a curves for coarse, medium and fine grid solutions are shown in Figure 10. Although 
the results are almost the same up to the breakdown point, only the fine grid solution indicates the 
change in slope due to the vortex merging. Although not shown here, two distinct vortices are not 
observed anywhere at 12" in the coarse and medium grid solutions. The perspective views of the 
total pressure contour plots at 30" are shown in Figure 11 for the coarse grid solution. 
Comparison of Figure 11 and Figure 3 indicates that the primary vortex becomes dissipative as 
the computational grid becomes coarse. In Figure 3 a total pressure loss in the shear layer rolling 
up to the primary vortex is clearly seen. On the other hand, this is not observed in the coarse grid 
solution. It is also noticed that the primary vortex is located outboard and downward when the 
computational grid is coarse. When the grid becomes finer, the resolution of the flow over the 
upper surface is improved and the size of the secondary separation vortex becomes larger. This 
secondary vortex moves the primary vortex inboard and upward. Thus improved resolution of the 
flow changes the location of the primary vortex. The C,-a curve shows only a small discrepancy 
because the primary vortex is located near the surface in the coarse grid solution, even though the 
vortex is weak. The total pressure loss in the centre of the primary vortex core is different for each 
grid result. In the conical Euler solutions the total pressure loss and the location of the primary 
vortex are basically indifferent to the grid size and the amount of numerical smoothing.* This is 
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a 

Figure 10. C, vs OL characteristics (grid effect); M I  =0.3, Re= 1.3 x lo6 

Figure I I .  Perspective view of the spanwise total pressure contour plots (coarse grid solution); M,,  =0.3, R e =  1.3 x lo6, 
OL = 30" 

not true in the Navier-Stokes solutions because the resolution of the flow changes the size of the 
secondary separation. The effect of resolution is more serious for the double-delta wing since the 
strake vortex in the wing region is relatively weak. Besides, vortex breakdown occurs only in 
the fine grid solution. The particle path traces indicate no reverse flows in the medium and coarse 
grid solutions. The computed C,-a curve shows a good result even for the coarse grid 
computation. Thus the coarse grid may be useful for engineering purposes. However, it should be 
remembered that the solution may lack flow structure. 

To check the effect of the numerical smoothing terms, the coefficient of the smoothing terms was 
artificially increased to be three times larger. The result still displayed the existence of vortex 
breakdown and was close to the result in Figure 3, except that the secondary separation vortex 
was smaller. This, along with the Euler solution in Figure 9, indicates that the smoothing terms are 
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not a key parameter in deciding flow field structure. The viscous shear layers over the surface 
appear to be the most important factor in deciding the vortical flow structure. 

SUMMARY AND CONCLUSIONS 

Extensive study on the numerical simulation of the vortical flow over a double-delta wing was 
carried out using the ‘thin layer’ Navier-Stokes and Euler equations. Two important flow 
characteristics, vortex interaction and vortex breakdown, have been successfully simulated. The 
C,-a characteristics were well predicted up to the breakdown angle of attack. The Euler solutions 
showed fairly good agreement with the experiment on the C,-a characteristics. However, other 
aspects of the solution at each angle of attack, such as the locus of the leading-edge separation 
vortex, were not consistent with the experiment. Even for the Navier-Stokes computations using a 
fine grid, further grid resolution is required to obtain good quantitative agreement with the 
experiment. Additional research into the careful specification of boundary conditions may also be 
required. 
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